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Henry (Philibert Gaspard) Darcy was born in Dijon,
in the Southern part of France, in 1803.

http://en.wikipedia.org/wiki/Image:Henry_Darcy

His studies led to a position with the Dept. of  Bridges            
& Roads    

One of his main early projects was the water supply system (pressure 
pipes) for the city of Dijon, bringing water by a covered aqueduct from 
the Roster Spring, some 12.7 km from the city, to a reservoir. He was 
also involved in many other projects, as well as in city politics

He met and married (1828) an English woman and
established his home in Dijon.

Who was Henry Darcy?

In 1821 he enrolled at the Ecole Polytechnique in Paris, 
and then continued in 1823 to study at the Ecole des 
Ponts at Chaussees.



9/12/20069/12/2006 66

In that position, he could focus on his research on friction losses in pressure
pipes, for example, improving the Pitot Tube.

In 1848 he became the Chief Engineer for the Department of Cote-d`Or                
(around Dijon). However, due to political pressure, he had to leave to become the 
Chief Director for Water and Pavements in Paris.

During this period, he modified the Prony equation for calculating 
the head loss in pipes, due to friction. Later, this equation was further 
modified by Julius Weisach to become the well known Darcy-Weisbach
equation for  head losses in pipes.

His lifelong goal was to convert the water supply system of the city of 
Dijon, which was using highly polluted water from shallow wells and 
streams, to a centralized water distribution system,  which he designed.
In 1840 Dijon's public water supply was one of the best in Europe, in
terms of both quantity and quality,
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Henry Darcy died of pneumonia in 1858 and was buried in Dijon.

Due to poor health, he resigned and returned to Dijon in 1855, where 
he continued his research. 

During 1855-1856, he devoted  his research to study the flow of water and the 
resulting head loss in sand columns. This research led to what we refer to as 
DARCY’s LAW.  The motivation for this research: filtration of the water for
the fountains of the city of Dijon.

His approach to research was purely scientific and in line with the 
empirical approach to science that was common during at that time. 
Besides his hydraulic experiments, he developed a theory for recharge 
by infiltration from rainwater to groundwater, offered a rational 
explanation for seasonal variation of the productivity of wells, and 
provided a theoretical explanation for the occurrence of artesian wells, 
phenomena which  were then still issues of serious debate.

Primarily an engineer, but he loved to conduct research, and 
did so whenever he felt that the prevailing knowledge was insufficient

to solve a problem satisfactorily.
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His research and engineering plans were summarized in 
his book:

H. Darcy, Les Fontaines Publiques de la Ville de Dijon, 
Dalmont, Paris (1856).

Recently translated into English by Patricia Bobeck
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A page in Darcy’s book 
in which the experimental
data are presented:



9/12/20069/12/2006 1111

Another page of Darcy’s 
translated book in which the
experimental data are
presented: 
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…and the conclusion:
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DARCY’s  (EXPERIMENTAL) LAW

The sand column experimental setup. 

1 2 ,
h h

Q KA
L
−

=

in which K is a coefficient of proportionality
that depends on the permeability of the sand.

Flow rate, Q, is proportional to:
head difference, 
cross-sectional area, A, 

and inversely proportional to 
length of column, L.

1 2h h h∆ = −

(Now) We refer to K as the hydraulic conductivity
of the porous medium.

Not original symbols
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Q

A
h1

Datum level

z1 h2

Sand

h = h1 – h2

z2

L

p1
γ

p2
γ

∆1

2

1 2h h
Q KA

L
−

=

piezometric head           

mass density;     = gravity accelaration.

ph h z g
g

ρ
ρ

= +=

=
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'
g

K k
ρ
µ

=
Permeability, k,  vs. Hydraulic conductivity, K.

µ = dynamic viscosity

* *( , )
( )o

p

p

dph h t z
g pρ

= = + ∫x

Compressible fluid

(Hubbert’s potential)

( )pρ ρ=

Flow

s s+∆s

At a point: HYDRAULIC GRADIENT:
1 2 ( ) ( ) ( )h h h s h s s d h s

L L d s
− − + ∆

= ≡ = −J

specific discharge

volume of water per unit time

through a unit area normal to the flow.

Qq
A
=

=

=

….OVER THE YEARS….EXTENSIONS…

water
velocity

=qV
φ

=
⎧
⎨
⎩
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For three- dimensional flow; anisotropic porous medium

(summation convention applicab ), ei ij
j

dh
q K

dx
= ⋅ =q K J

( )
s

d h s
q K

d s
= −For one-dimensional flow:

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

q K K K
q K K K

q K K K

= + +

= + +

= + +

J J J
J J J
J J J

 

 
K =          

        

xx xy xz

yx yy yz

zx zy zz

K K K
K K K

K K K

…principal directions, etc.

vectors, ,=q J  
porous mediumisotropic; dimensional flow-For three

1,2,3 ( , , ),i i i
i

dh
q K i or x y z

dx
= = =−J J

,K h K=− ∇ ≡q J
Or:

= hydraulic gradientJ

..........Hydraulic gradienth≡−∇J

..second rank tensor
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Inhomogeneous fluid:                              ( , , )p c Tρ ρ=
Direct extension from the original Darcy Law  ?

The piezometric head ,   h ,cannot be defined!

Inhomogeneous porous medium: 

We use K = K(x,y,z) in Darcy’s Law. cons .tantρ=

We’ll see later that this is indeed the generalized form of Darcy’s Law

Driving forces

We extend to cons .tantρ≠
( )k
p g zρ

µ
=− ∇ + ∇q

p−∇

g zρ− ∇
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Range of validity of Darcy’s (linear) law:

Experiments.

kinematic viscosi ye , .tR qd
g
µν

ν ρ
= = =

Re 1.

By analogy to flow through pipes:

Reynolds number:

d = some representative (microscopic) length characterizing void space, e.g. d10. 

Darcy's law is valid as long as the Re, that indicates the magnitude of the 
inertial  forces  relative to the viscous drag ones, does not exceed a value 
of about 1 (but sometimes  as high as 10).
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So far, (the experimentally derived) Darcy’s law looks like a constitutive relation,
Or a phenomenological law, with a coefficient (k) that represents material property
and has to be obtained  experimentally.  

There have been many attempts to “derive” Darcy’s law, either by analogy
to laminar flow in a network of pipes, or by studying the resistance to
laminar flow  around an individual grain. From such investigations, 
conclusions were drawn with respect to  a porous medium, visualized 
as a network of tortuous capillary pipes .

Using Hagen-Poisseuille’s law:
4 2

128 32s s
d g dh d g dh

Q V
ds ds

π ρ ρ
µ µ

=− ⇒ =−

4

2

128

32

s
s s
Q d g dh g dh

q N q k
ab ds ds

d
k

π ρ ρ
µ µ

φ

= =− ⇒ =−

=− Etc.
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Fissure models:
2

3 2

2

12

(1 ) 12

b g dh g dh
V q k

ds ds
a

k

ρ ρ
µ µ

φ
φ

= ⇒ =

=
−

Resistance to flow models

ALL BASED ON…..the NAVIER-STOKES equation (for a Newtonian fluid).. 
….conclusion…??

2 2 224
3

Re 2 2 4D
V V d

D d V A C
π

π µ ρ ρ= = =

Drag on an individual particle in laminar flow (Stokes):

….balance of forces…drag, pressure, gravity..

s

k
g

pq
s s

z
ρ

µ
∂ ∂⎛ ⎞⎟⎜=− + ⎟⎟⎜⎝ ⎠∂ ∂
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There have been attempts to extend Darcy’s law for higher Reynolds number, 
(“correction term”), e.g.,   

Forchheimer (1901):

Kozeny-Carman (Scheidegger, 1960):

Ward (1964): 

Joseph et al (1982)

, 1.6 2mJ Wq bq m= + ≤ ≤

2
2

3 2 3
(1 ) 3 (1 )180

4
J q q

g d g d

φ ν β φα
φ φ

− −
= +

2
20.55 ,

360
dJ q q k

gk g k
ν

= + =

1
Fp c

k k
µ ρ∇ = +q q q
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⇒
' ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Hagen - Poisseuille s law
Stokes law
Hele - Shaw model (parallel plates)

All are simplified forms of the 
Navier stokes equation (Newtonian fkuid), or
the momentum balance equation.

.…s law in not a constitutive law’Darcy

We turn our attention to the momentum balance equation.

But first:

What is wrong in this table?
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What is wrong in this table?

Exist also  in a material continuum 
(microscopic level)

Flux/constitutive laws
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Recall: This presentation is not on 
PHENOMENA OF TRANSPORT IN POROUS MEDIA, 

But, primarily… around DARCY”S law (and its contribution to…modeling)

….1856……1956:   IAHR SYMPOSIA DARCY, Dijon, 20-26, September, 1956.

What  was discussed 50 years ago  under the subject of “GROUNDWATER” ?

SCHNEEBELI, G.,: Hydraulics of wells, using the Dupuit
assumption (1863),  the existence of a seepage, 
radius of influence, anisotropy…

KOLLIS, W. (Poland): Flow affected by a cutoff wall-
experiments in a sand box (DARCY’s law: v=ki)

Goldschmidt, M.J. and Jacobs M. (Israel). Ground water
in the Haifa-Acco dune area.

IRMAY, S. (Israel) Extension of Dracy’s Law to unsteady 
and unsaturated flow. (citing earlier works by Muskat, 
Richards, Gardner, and the work Edelfson and 
Anderson who introduced the capillary and osmotic 
potentials).                            
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SCHOLLER, H. On the radius of wells and DARCY’s COEFFICIENT in a sandy 
aquifer.

TANAKA, H. and YAHAGI, F. Flow under a cutoff wall—quantitative considerations

SCHIFF, l. Darcy’s law in planning artificial recharge through a pond.

MOSONI, E., and KOVACS, G. Similarity laws for sand-box modeling.

MENETH, E., On the importance of Darcy’s law in sand-box modeling.

UBELL, K., Unsteady flow to wells.

De JOSSELIN de JONG, G. On the movement of tracer particles in flow through 
the porous media…..the beginning of his work on dispersion. ….using 3-d 
random walk….breakthrough curves in a sand column to determine the 
coefficient of dispersion.  A pioneering work!!

also:….. Evaluation of permeability….
…. Hydraulics of wells……

Two phase flow and relative permeabilities to oil and water…

SCHOLLER, H. On the radius of wells and DARCY’s COEFFICIENT in a sandy 
aquifer.

TANAKA, H. and YAHAGI, F. Flow under a cutoff wall—quantitative considerations

SCHIFF, l. Darcy’s law in planning artificial recharge through a pond.

MOSONI, E., and KOVACS, G. Similarity laws for sand-box modeling.

MENETH, E., On the importance of Darcy’s law in sand-box modeling.

UBELL, K., Unsteady flow to wells.

De JOSSELIN de JONG, G. On the movement of tracer particles in flow through 
the porous media…..the beginning of his work on dispersion. ….using 3-d 
random walk….breakthrough curves in a sand column to determine the 
coefficient of dispersion.  A pioneering work!!

also:….. Evaluation of permeability….
…. Hydraulics of wells……

Two phase flow and relative permeabilities to oil and water…

Actually, an extension 
of Darcy’s law

DISPERSION!!DISPERSION!!
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DAVID, K. TODD, On laboratory research with ground water models..

Tison, G. Jr. On water level fluctuations..

Stallman, R.W. Numerical methods for analyzing data on ground water levels.

…and additional presentations on such subjects as:

On flow to horizontal wells
On pumping tests
Flow in the vicinity of wells
Evaluation of ground water resources
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…of course, not based on a comprehensive literature survey, but….
but very few discussions  (in that symposium) on the following subjects:

Porous medium as a continuum …averaging,
…and …

Modelling  (conceptual, 
mathemaitical, 

numerical, 
computer solutions…)

Effect of heterogeneity…and uncertainty
….stochastic modeling

….contamination….etc
….
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THE CONTINUUM APPROACH TO THE DESCRIPTION/MODELING
Of PHENOMENA OF TRANSPORT IN POROUS MEDIA.

What is a continuum?
A spatial domain at every point of which we can define 
state variables  and material coefficients.

What is a porous medium? 
A spatial domain containing a solid matrix and a void space (occupied 
by one or more fluid phases), for which an REV can be determined.

What is an REV? A spatial domain (sample) such that no matter where 
you place it within a porous medium domain, it will always contain both
a persistent solid phase and a void space.

Why do we need the CONTINUUM APPROAH to describe/model 
phenomena of transport in porous media?
We can describe/model phenomena at the microscopic level (= behavior 
within a solid or fluid phase), but, practically, we cannot describe the interface 
between them,  To overcome this obstacle, we transform the domain and 
the phenomena that occur within it to the macroscopic level, at which these 
inter-phase boundaries do not exist----they are replaced by coefficients that 
represent at the macroscopic level the effects of these (microscopic level)       
boundaries    

How is this relvant ?
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φ

0

1.0

Uv / U

 Domai
microsc
    effec

Point in void

Point in solid

Pore size

(Molecular)          Microscopic          Macroscopic          Megascopic….

REVµ REV

( , )

( , )

1
( , ) ( ', ; ) ( '),

( , )

1
( , ) ( ', ; ) ( ') ( ')

( , )

t

t

e t e t d
t

or

e t e t d
t

α

α
α α α

α

α
α α

α

γ

=

=

∫

∫

x

x

x x x x
x

x x x x x
x

0

0

U
0

U
0

U
U

U
U

Averaging over an REV

Intrinsic phase average
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( , )
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1
( , ) ( ', ; ) ( '),
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1
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1
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Mass average
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t e t
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α
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α
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=
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∫

∫
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x
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U
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t

o o

e
d

e t e t e e t

α

α
α
αα

α

α
α

αα α α

ρ
=

≡ − =

∫ x
x

x x x

0U
U

REV

SIZE of REV?

Deviation from the average Average of deviation vanishes
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OBJECTIVE: By averaging (smoothing) over an REV, we overcome the difficulties 
inherent in the fact that the domain is heterogeneous at the 
MICROSCOPIC SCALE (presence of solids and pores), and we lack
information on the geometrical details of this heterogeneity.

INSTEAD,
we pass to a level of description (and measurement !), at which this 
information is not required…..The MACROSCOPIC SCALE (which
may still be  heterogeneous (e.g., with respect to K). 

The price for this convenience….the creation of (geometrical) coefficients, which
reflect at the macroscopic level, the effects of the microscopic inter-phase 
boundaries that were eliminated by the averaging:  

porosity,   tortuosity,   permeability,   dispersivity



9/12/20069/12/2006 3232

VOLUME AVERAGING:

(Different techniques by Bear-Bachmat, by Whitaker, by Hassanizadeh-Gray..)

( , ) ( ', ; ) ( ', ; )
o

e t e t e tα
α α α= +x x x x x

1 2 1 2 1 2

o o
G G G G G G

α
α α= +

( )
0

1
S

G
G G dS

t t αβ

α
α

α αθ θ
⎛ ⎞∂ ∂⎟⎜ = − ⋅⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∫ u n

U

( )...
... ...

0

1ijk
ijk ijk i

i i
S

G
G G n dS

x x

α

α
α α

αβ
θ θ
⎛ ⎞∂ ∂⎟⎜ ⎟ = + ⋅⎜ ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠ ∫U

Averaging rules

Note the effect of the
BC’s on the interface.
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Or:

( ) , ( )E E E Ee
e e

t
α

α α α α α α α α αρ Γ
∂

∂
=−∇⋅ + + = −j jV V V

By averaging:

0

( )

1
( )

o o E E

E

S

e
e e

t

f e dS

f

αβ

α α α αα αα α
α α α α α α α β α α α

α β α α

θ
θ θ ρ Γ→

→

∂
=−∇⋅ + + − +

∂

⎡ ⎤= − + ⋅⎢ ⎥⎣ ⎦∫

j

u j n

V V

V
U

Differential balance of E:
E Ee

e
t
α

α α α αρ Γ
∂

∂
=−∇⋅ +V

Fundamental balance equation:

Starting point:  the balance equation of an extensive quantity, E, at the 
microscopic level, i.e., at a point inside a phase. Intensive quantity e. dE

e
d

=
USource of E

Velocity of EDiffusive flux  of E

Dispersive flux  of E

Transfer from      
Across 

α β→Sαβ

volumetric fractio  of fluid ph e.n asαθ α= −

Mass-averaged 
velocity
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( ) '
t

α
α α α αα α

α α α α α α α α
ρ

ρ ρ
θ

θ θ
∂

=−∇⋅ ≡−∇⋅ ≡
∂

qqV V

o o
e

α
α α

α α α αρ V V

e ρ→

t
α

α αρ
ρ∂

=−∇⋅
∂

V

0,=a( - u).nV 0⋅ ≡am
aj n

Specific discharge

For mass of a fluid phase:

Microscopic mass balance equation

and

Is:

The macroscopic mass balance equation for the fluid        -phase,  α
with i.e. S is a material surface
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0

( ) ,

1
( )

o o

S

c
c c

t

c dS

f

f
αβ

α αγ α α ααγ γ γ γ γα α
α α α α α α α β α α α

γ γ γ
α β α α α α αβ

θ
θ θ ρ Γ→

→

∂

∂
=−∇⋅ + + − +

⎡ ⎤= − + ⋅⎢ ⎥⎣ ⎦∫

j

u j n

V V

V
U

And for a     -component of the        -fluid phase: γ α

More relevant here…..averaging the linear momentum balance equation 
(motion equation)

Microscopic linear momentum balance equation 
for the fluid phase:

Dispersive flux of 
- mass γ

Next,
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Microscopic linear momentum balance equation 
for the fluid phase:

( )

, in the phase,, ( ) stress 

external body fo c - .= gr e 

EE e

z

ρ ρ

Γ

≡ =

≡ ∇

= − ≡−

=

M

M

M j V
F

V V V σ =

( ) ( )
t
ρ ρ ρ

∂

∂
=−∇⋅ − + FV VV σ

Stress =
Diffusive flux of 
fluid momentum

Advective flux of 
fluid momentum

Source

Next: Volume (REV) averaging
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The macroscopic or averaged momentum balance equation:

( )

0

( ) ,

1
( ) ,

S

o o

S

s

s

F
t

f dS

f

α

αα
α α α αα α α

α α α α α α α α α α α

α α α α α

ρ
ρ

ρ ρ

ρ

θ
θ θ→

→

∂

∂
=−∇⋅ + − − +

⎡ ⎤= − − ⋅⎢ ⎥⎣ ⎦∫

M

M u n

V V V V V

V V

σ

σ
U

Approximations:

( )
o o

α
α α α α α

α α α α α α α α αρ ρ ρVV V V V V

,
o o α

α α
α α α αρρ V V

Assume: saturated flow,         porosityαθ φ=→
Solid-fluid interface is material surface with respect to fluid mass, 

( ) 0− ⋅ =u nV

Neglect dispersive 
momentum flux and 
Dispersive mass flux
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σ
0

1
( ) ,

SS
dS

t
F

α

αα α αα α α
ρ

ρ
ρ

φ
φ φσ∂

∂
=−∇⋅ − + ⋅ +∫

V V V n
U

Macroscopic momentum balance equation for saturated flow

Or:

σ σ

σ

0

1

,

SS

D
dS

Dt

D
Dt

F

F

α

α
α α α

α
αα α

ρ

ρ

ρ

ρ

φ φ φ

φ φ φ

=∇⋅ + ⋅ +

= ∇⋅ +

∫ n
V

V
U

material derivative
D
Dt t

α α
α α α α

ρ ρφ φ
⎛ ⎞∂ ⎟⎜ ⎟≡ + ∇⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠

=
V V V V

with

,ij ij ij i
i

z
p F g

x
α α ατ δσ ∂

∂
= − =−

Hence:

Or:

- phaseα
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Hence:

iji

i i j

zDV p
g

Dt x x x

αα α
α

ρ ρ
τ

φ φ φ φ
∂∂ ∂

=− − +
∂ ∂ ∂

Forces due to: pressure……..  gravity………viscous resistance to flow

Assume Newtonian fluid: ''j
ij ij

j i k

i k
x x x

VV V
τ µ λ δ

⎛ ⎞∂∂ ∂⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠

Bear and Bachmat (1990)….mathematical manipulations, and adding (simplifying)
assumptions, e.g.,

2
0, insid0 e vp∇ = UPressure varies monotonously within the REV, i.e.,

In the vicinity of the solid-fluid surface, the normal components of both inertial 
forces and viscous resistance forces are negligible, relative to those due to
pressure gradient and gravity, i.e., 

j ij
j j

i j j

DV p z
n g n

Dt x x x
τ

ρ ρ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ⎟⎜⎟⎜ ⎟⎟− +⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎟⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠
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0

0

1
,

(kind of) tortuosity

iji ji j
i i j j ffS

g g dS
p z p z T T x nx x x x

αα α
α

ρφ φ ρ
φ

∂ ∂
⎛ ⎞⎛ ⎞ ⎟∂ ∂⎜⎟⎜ ⎟⎜⎟− − =− − =⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟⎜∂ ∂ ∂ ∂ ⎟⎝ ⎠ ⎟⎜⎝ ⎠

=

∫

T
U

Viscous resistance force: ij

jx

ατ
φ

∂

∂
Newtonian fluid: 

''ji k
ij ij

j i kx x x
VV V

τ µ λ δ
⎛ ⎞∂∂ ∂⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠

………mathematical development, and assumptions about order of magnitude 
of terms…e.g.,                       inside the fluid phase (microscopically isochoric flow) 0∇⋅ =V

2

0 0

1 1
,

assuming 0

ij i i
i j

j i j j nfs fsS S
dS dS

x x x x
q VVn s

α
αφ µ

τ∂ ∂

∇⋅

⎡ ⎤⎛ ⎞∂ ∂ ⎟⎜⎢ ⎥⎟= + +⎜ ⎟⎢ ⎥⎜ ⎟⎜∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

=

∫ ∫

V

U U

=?

0

0withinα
αρ ρ UAssumption:
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Important assumption: fluid sticks to the solid (“no-slip”)
sf sf

s
S S
=V V

and

sf

s

si si
S
≈V V

…………….

( ) ( )

( )

'

2

1
0 0

0

0
,

1 1

1

1
or:

sf

fs fs

fs

fs

si iSi

n
fss

sj j ij
c

si f
j sj

n

V V

s

C
s

i j

ij rj rj
V

V V n n

q V V

V d d

d

d q

S S

S

S

S S

S

S

α

α

α

δ

φα

∆

∆

∆

∆

−
∂
∂

− −

∂
= −

∂
=−

∫ ∫

∫

∫

U U

U

U

e.g., hydraulic radius

Specific discharge, relative 
to the solid.2

f

c

C
ijα

∆
= property of the geometry 
of the phase.

…………….

( ) ( )

( )

'

2

1
0 0

0

0
,

1 1

1

1
or:

sf

fs fs

fs

fs

si iSi

n
fss

sj j ij
c

si f
j sj

n

V V

s

C
s

i j

ij rj rj
V

V V n n

q V V

V d d

d

d q

S S

S

S

S S

S

S

α

α

α

δ

φα

∆

∆

∆

∆

−
∂
∂

− −

∂
= −

∂
=−

∫ ∫

∫

∫

U U

U

U
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…………………..
2

2
ij i

j i j

f
x x x ij rj

Cq q
α

α

α
φ µ
τ α

∆
∂ ⎡ ⎤∂⎢ ⎥= ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

−

0

1
S

ij ij
ij j

j j
S

n dS
x x α

α α
φτ

φ τ
τ∂ ∂

= + ⋅
∂ ∂ ∫U

Recall:

i.e., resistance force per unit volume of porous medium. Thus, the total viscous 
resistance  is made up of:
---resistance resulting from internal friction in the fluid
---resistance expressing drag at the fluid-solid interface.

0
2

1
S
ij jS

f
ij rjn dS C qα

α α
τ µ α

∆
=⋅ −∫U

2
.resistance to flow due to the internal friction inside the fluidi

i jx x
qαµ =

∂
∂
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Finally…

*

2

2

q pi ji
ijt x x xj j j

ri
ij rjx j j

q q zg T

q C q
x

α
α α

α α α

α

ρ φ ρ
φ

µ µ α

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂

∂

⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎪ ⎜ ⎟+ = − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭ ⎝ ⎠

+ −
∆

*
ijT , tensorial coefficients that reflect the configuration of 

(single phase saturated flow) 
ijα

sfS

Special cases: (isochoric fl w, 0 o )0s = ∇ ⋅ =V q
( *

2

2

/ )q pi i
j ijt x x xj j j

i
ij rjx j j

q zq g T

q C q
x

α
α α

α α α

α

φ
ρ φ ρ

µ µ α

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂

∂ ∂

⎛ ⎞⎧ ⎫⎪ ⎪ ⎜ ⎟+ = − +⎨ ⎬
⎜ ⎟⎪ ⎪⎩ ⎭ ⎝ ⎠

+ −
∆
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Assumption:

2

2 2; ri
ij rj ij rj

j jx

C C qD
q q

Dt x

α
α α α αα α

α α

ρµ α φ µ α µ
∆ ∆

∂

∂ ∂

V

---viscous resistance due to momentum transfer at fluid-solid interface is much 
larger than both inertial force and the viscous resistance to the flow inside the fluid: 

…a condition valid for  Re 1 10< −

*/
Re c c c c

c

V k Tφ
ν

=
2

1 *( )jl ji ilk T
C
α
α

φ
α −∆

=

( ) ps jl
j sjrj x xl l

k zq V V g
α

α α
ραφ

µ

∂ ∂

∂ ∂

⎛ ⎞
⎜ ⎟≡ − = − −
⎜ ⎟
⎝ ⎠

i.e., Darcy’s Law    (saturated flow, but possibly variable density. Anisotropic soil)

CASE A.
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CASE B.

Assumptions:
•Inertial effects are negligible

But

•We do not neglect the effect 
of internal friction  

2

2

;

i.e., is not negligible

ij rj

ri

j jx

C D
q

Dt

q
x

α
α αα

α

α

ρµ α φ

µ

∆

∂

∂ ∂

V

* 1 2( )pkj jp pk rj
rk x x xj j i i

k k T qzq g
x

α
α

α ρ
φµ

− ∂∂ ∂

∂ ∂ ∂

⎛ ⎞
⎜ ⎟= − + +
⎜ ⎟
⎝ ⎠

2

*
p rj
x x xj j i i

qk z kq g
rj xT

α
α

α ρ
φµ

∂∂ ∂

∂ ∂ ∂

⎛ ⎞
⎜ ⎟= − + +
⎜ ⎟
⎝ ⎠

For an isotropic porous medium:
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2
*pr r

k kg z
T

α α
α ρ

φµ

⎛ ⎞= − ∇ + ∇ − ∇⎜ ⎟
⎝ ⎠

q q

…which is, more or less, the BRINKMAN EQUATION (1948), e.g., 

2 ,p
k
µ µ∇ = + ∇q q µ = effective viscosity

Note:
Two  viscous terms:  due to “friction” (momentum transfer) 
at the solid-fluid interface, and due to momentum 
transfer INSIDE the fluid, due to velocity gradient.  

…also obtained by Whitaker (1996) by averaging.

(Bachmat and Bear, 1986) 

Bear and Bachmat (1990), by averaging:  
1

*T
µ
µ φ
=

i.e., dependent on
void space geometry.

The Laplacian term is required mainly when a no-slip BC should be satisfied.

Or:
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Two  viscous terms:  due to “friction” (momentum transfer) 
at the solid-fluid interface, and due to momentum 
transfer INSIDE the fluid, due to velocity gradient.  

The Laplacian term is required mainly when a 
no-slip BC should be satisfied

The Brinkman equation is used when a porous medium 
domain is bounded by a body of flowing fluid, along which
the boundary condition can be obtained from the 
requirement of continuity of total normal stress, which under
some simplifying assumptions concerning the viscous part of 
the stress, leads to continuity of effective stress.

( )

( )

11,2 2 21

10,

., . :. .C ,B

M

f

M

q V Vx qx oz z z

V f V Vf pmz
e g

q

k

µ µ α
φ φ

α

∂ ∂ ∂

∂ ∂ ∂

∂

∂

⋅ = ⇒ = ⇒ − =⎡ ⎤⎣ ⎦

⇒ = −

τ n

Brinkman equation also used when dealing with convection in porous media.

For a Newtonian fluid, the boundary condition
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Another case, oscillatory flow, waves, where              
may not be neglected.

V
t

∂

∂

For example: for the combined fluid-solid system:

(1 )f fj ijs
f s jxi

D V D Vsj F
Dt Dt

σ
φρ φ ρ ρ

∂

∂
+ − = +

which may serve as a starting point for various simplifications, e.g.:
local acceleration much larger than the convective one, Then, for 
the fluid alone (in terms of the velocity relative to the solid):

( ) 1* 2 *

ri si
f f

f ji ij jl rlx xj j

V V
t t

p zg T T k V

φρ φρ

φ ρ φ µ

∂ ∂

∂ ∂

−∂ ∂

∂ ∂

+

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠
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Other micro to macro transformation techniques 
(= upscaling) are also available, e.g.:

Volume averaging technique with closure (e.g., Whitaker, 1999)
(we always need some kind of closure hypothesis of a macroscopic or 
microscopic nature, which expresses the unknown coupling between solid and 
fluid phases.….eventually takes the form of a macroscopic coefficient
(e.g., permeability).

In an excellent series of papers, Majid Hassanizadeh and Bill Gray, presented a 
complete and comprehensive approach to the averaging of all phenomena 
of transport in porous media, constitutive relations, etc.

Additional approaches to macroscopization…

MIXTURE THEORY (especially in connection with deformable porous medium)

ASYMPTOTIC HOMOGENIZATION method (or formal asymptotic expansion, 
or double-scale asymptotic expansion)
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Multiple scales

So far, two scales:   microscopic         macroscopic

Or a layered porous medium.

So far, two scales:   microscopic         macroscopic
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Homogenization of Second-Order Equation

The homogenization method is a mathematical method used for the 
study of the initial-value and boundary-value problems in domains 
with a periodic structure. If the dimensions of a period are small 
compared to the size of the whole domain, it is natural to define a 
small parameter    as the ratio between those dimensions. The study 
of the initial-value and boundary-value problems is associated with 
this small parameter. The asymptotic process represents the 
transition from microscopic macroscopic phenomena. 

(Ene & Polisevski, 1987)

ε

0ε →
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ASYMPTOTIC HOMOGENIZATION method 

Assumption: The medium at the macroscopic level exhibits a periodic structure, 
based on a basic cell at the microscopic level (i.e., existence of scale separation).

The transformation from micro to macro level is derived by making use of the 
small parameter ,      
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Objective: Derive Darcy’s law by the method of asymptotic 
homogenization (e.g., Ene and Polisevski, 1987; Mei and Auriault, 1989, 
among many others)

The fluid:  Newtonian, compressible

( )( ) ( ) ,T pµ λ= ∇ + ∇ + ∇ ⋅ = −V V V I Iτ σ τ
Simplified form of the momentum balance equation (steady state; non-deformable):

( )

( )
( )

σ
2

0,

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

or:
,

p
ρ ρ

ρ µ
λ µ ρ

∇⋅ − + =

⋅∇ =−∇ + ∇
+ + ∇ ∇⋅ +

F

x V x V x x V x
V x x

VV

g

( ) ( )
t
ρ ρ ρ

∂

∂
=−∇⋅ − + FV VV σ

Starting point: The balance equation of linear momentum
Body force due
To gravity:

g z= − ∇F

x….macroscopic coordinates.
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ASYMPTOTIC HOMOGENIZATION method 
(or formal asymptotic expansion, 
or double-scale asymptotic expansion)

Assumption: The medium at the macroscopic level exhibits a periodic structure, 
based on a basic cell at the microscopic level (i.e., existence of scale separation).

The transformation from micro to macro level is derived by making use of the 
small parameter ,      

In 3-d

(Ene & Polisevski, 1987)
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Darcy’s law by homogenization

Porous medium                       ….   length Lv sΩ =Ω +Ω
Void-solid interface          iΓ
Domain visualized as a periodic structure
with elementary cells,     

Two scales: L and l .       

size of basic cell
characteristic length of domain

, , 1.L
L

ε ε= =
l

l

s vY Y Y= +

There exists a perturbation parameter:

Local system,     .y
ε

=
xy

The transformation from micro to macro level is derived by making use of a
small parameter.   Such a parameter is: ε
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Again, the momentum balance equation in a fluid continuum:

( )
( )

2

.

( , ) ( , ) ( , ) ( , ) ( , )
( ) ( , ) ( , )
pε ε ε ε ε

ε ε

ρ ε ε ε ε µ ε
λ µ ε ρ ε

⋅∇ =−∇ + ∇
+ + ∇∇⋅ +

x V x V x x V x
V x x g

Add, no-slip B.C.: ( , ) 0, i
ε ε Γ= ∈V x x

We  need also the mass balance equation (steady state) in a fluid continuum:

,0( , ) ( , ) v
ε ερ ε ε Ω⎡ ⎤ =⎣ ⎦∇⋅ ∈x V x x

Constitutive relation for the fluid, e.g.:

2
1 2

2
1 2

2
1 2

( , ) ( , ) ( , ) ( , ) ...,

( , ) ( , ) ( , ) ( , ) ...,

( , ) ( , ) ( , ) ( , ) ...,

o

o

o

p p p pε

ε

ε

ε ε ε

ε ε ε

ρ ε ρ ερ ε ρ

= + + +

= + + +

= + + +

x x y x y x y

V x V x y V x y V x y

x x y x y x y

(at the interface with the solid)

Assumption: each dependent variable can be expanded into an asymptotic 
series in        : ε

( )( ) ( ) ( ) 1 ,o op p p p pε ε ε ε ε ε ερ ρ ρ ρ β⎡ ⎤= ⇒ = + −⎣ ⎦

y…microscopic scale
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2
1 2

2
1 2

2
1 2

( , ) ( , ) ( , ) ( , ) ...,

( , ) ( , ) ( , ) ( , ) ...,

( , ) ( , ) ( , ) ( , ) ...,

o

o

o

p p p pε

ε

ε

ε ε ε

ε ε ε

ρ ε ρ ερ ε ρ

= + + +

= + + +

= + + +

x x y x y x y

V x V x y V x y V x y

x x y x y x y

Note: , ,vY∈ ∈Ωy x i.e., we have extended the existence of the 
variable to the entire domain.

However,  since      really corresponds to points only in the fluid
continuum,  i.e., in           ,  we have to multiply the variables by the 
characteristic function , (   =1 in         ,  =0 in        )

vΩ
( )γ x vΩ sΩ

x

By inserting the perturbed expressions into the equation of state:

( ) ( ) ( )0 0 0 0
0 0 1 1 2 21 ( ) ; ; ; ( )ap p p p p p pβ β βρ ρ ρ ρ ρ ρ⎡ ⎤= + − = =⎣ ⎦

We use  the two-scale differentiation:
1 ;x y x

i y zx x xε
∂ ∂ ∂

∂ ∂ ∂
∇ = ∇ + ∇ ∇ = + +i j k

Mathematical development and comparison of  terms of the same order of        ε

Again:
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1
0

0 2
0 0

1 0 0

( ) : ( ) 0, , , ( )

( ) : ( ) ( ) ( )

( ) ( ) ( ) ,

y v v

y y y

y x

O p Y b

O

p p

ε

ε µ λ µ

ρ

− ∇ = ∈Ω ∈

⎡ ⎤∇ + + ∇ ∇ ⋅⎣ ⎦
= ∇ +∇ −

x,y x y

V x,y V x,y

x,y x,y x,y g
From the mass balance equation:

[ ]
[ ] [ ]

[ ]

1
0 0

2
0 0 0 1

1 0

( ) : ( ) ( ) 0, ( )

( ) : ( ) ( ) ( ) ( )

( ) ( ) 0, ( )

y

x y

y

O c

O

d

ε ρ

ε ρ ρ

ρ

∇ ⋅ =

∇ ⋅ +∇ ⋅

∇ ⋅ ⋅ =

x,y V x,y

x,y V x,y x,y V x,y

x,y V x,y
From the boundary conditions:

0 1 2( ) ( ) ( ) ...0, , ,i i= = = ∈Γ ∈ΣV x,y V x,y V x,y x y
From (b):

0 0( ) ( )p p=x,y x
From (a):

0 0( ) ( )ρ ρ=x,y x

From the N-S equation:
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From              balance equation (c):1( )O ε
[ ]0 ( ) 0,y∇ ⋅ =V x,y

From              mass balance equation (d):2( )O ε

[ ] [ ]
[ ]

0 0 0 1

1

( ) ( ) ( ) ( )

( , ) ( ) 0,
x y

y o

ρ ρ

ρ

∇ ⋅ +∇ ⋅

+∇ ⋅ =

x V x,y x V x,y

x y V x,y

…the                Navier-Stokes equation: 0( )O ε
2

0 1 0 0( ) ( ) ( ) ( ) ,y y xp pµ ρ∇ = ∇ +∇ −V x,y x,y x x g

These two equations have to be averaged over the     -cell, in order to smooth
out the microscopic variations and to produce equations in terms of the     

macroscopic,  x-coordinates only.

Y

Averaging is achieved by integration.
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These last 2 equations: mass and momentums balance equation. have to be 
averaged over the     -cell, in order to smooth out the microscopic 
variations and to produce equations in terms of the macroscopic,  x-coordinates 
only.

Y

Averaging …..by integration:

For the velocity          :oV 0 0
1( ) ( ) ( )

v
vY

d
Y

= ∫q x V x,y yU
“Homogenized velocity”
= specific discharge

By averaging the            :    mass balance equations: 2( )O ε

[ ]( ) ( ) 0x o oρ∇ ⋅ =x q x

i.e., the macroscopic mass balance equation.

Volume of Y—the entire cell
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In a similar way, for the momentum balance equation (Navier-Stokes), we 
lead to the solution:

[ ]0 0 0
1( ) ( ) ( ) ( )x p ρ
µ

= − ⋅ ∇ −V x,y w y x x g
2nd rank tensor

…and by integration: 

[ ]0 0 0( ) ( ) ( ) ,x xp g zρ
µ

= − ⋅ ∇ − = − ∇
kq x x x g g

in which 1( ) ( ) ( )
v

vY
d

Y
= ∫k x w y yU

is the (intrinsic) permeability.

( )0 0p g zρ− ∇ + + ∇

DARCY’s LAW

The macroscopic driving force (per unit volume of fluid) :

We have thus shown that Darcy’s law is  simplified form of the N-S equation.

again
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Some conclusions from the above development:
k is a property of the pore geometry only (and so is  w .) 
w, and hence k, is a second rank symmetric tensor.

     k   is    positive  definite.

Fields are highly  heterogeneous, e.g., with respect to K.

We are not interested in the details (anyway, we do not really know K(x).

Larger scale; field scale.

Recall: we have assumed 
(1) Periodicity, and 
(2) Separation of scales, with
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In a similar way, we can apply the homogenization method to transform a 
Flow model from the macroscopic scale to the megascopic (= field) scale.

For example, we may consider the balance equation (macroscopic level):

[ ]or
( ) 0,

( ) ( ) 0,
( ) ( )

:
,D

h
h h ∂

∇ ⋅ =

∇ ⋅ ⋅∇ = ∈Ω

= ∈ Ω

q x
K x x x
x x x

1l
L

ε =

Objective:   macroscopic           megascopic (field) scale.
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Following a similar procedure, by inserting
2

1 2( , ) ( , ) ( , ) ( , ) ...,oh h h hε ε ε ε= + + +x x y x y x y

0( ) ( , ) 0, ,y yh Y⎡ ⎤∇ ⋅ ⋅∇ = ∈Ω ∈⎣ ⎦K y x y x y
Eventually, we obtain the macroscopic mass balance equation:

into the continuity equation and boundary conditions, and assembling terms 
of the same order of         , we obtain from the               terms:ε 2( )O ε −

0 ( ) 0, ,eq
xh⎡ ⎤∇ ⋅ ⋅∇ = ∈Ω⎣ ⎦x K x x

where              is the effective/equivalent  hydraulic conductivity, defined by     
eqK

1 1( ) ( ) ( ) ( ) ( )eq
yY Y

d d
Y Y

= + ⋅∇∫ ∫K K y y K y w y yU U
can be shown to be a symmetric, positive definite, second rank tensor.

etc.

We have thus extended Darcy’s law and K to various scales.
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UNSATURATED / MULTIPHASE FLOW
To honor Darcy, …we still refer to the motion 
equation for a phase in multiphase flow as
DARCY’s Law.  

The subject has been of interest to soil physicists
(water in the vadose zone) and to reservoir engineers
….OIL, WATER, GAS in reservoirs.
Nowadays, it is of interest also to hydro-geologists, 
because of subsurface pollution.

The simplest approach is to assume that each fluid phase maintains a network 
of passages: the wetting fluid in the larger pores, with “friction” between fluid 
and solid, etc. This enables an extension of Darcy’s law to each phase, with the  
permeability a function of the saturation.. 

However, one could also realize that the situation---even in the case of water and
air—is (much) more complicated, e.g., the presence of liquid vapor in the gas, 
the presence of a wetting fluid film on the solid, and the presence of liquid-gas           

interfaces. Also, at low saturation, surface forces may play a significant role.

Recall: we focus only on the motion equation.
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'( ) ( ),
( )

w

o

p
w w p w

dpK S gz
pρ

= − ∇ Ψ + Ψ = ∫q

Buckingham (1907) was, probably among the first to analyze unsaturated flow.
He introduced the concept of  CAPILLARY POTENTIAL,        to describe the
movement of moisture in soil.  

Additional contributions: …..Gardner (1920)……Richard (1931) extended
Darcy’s law to unsaturated flow.

Ψ

Childs (1936) also extended the saturated flow equation to flow of 
water in the unsaturated zone.

Also, because the subject was investigated by
soil physicists, they felt that they have to take 
into account the fact that in the subsurface, it
is not “pure water”, but a “soil solution”, with   
dissolved matter.

Thus, perhaps it is more than just a simple 
extension of the saturated Darcy law. 

Some pioneering works:
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We should mention the most important work of Edelfson and Anderson
(HILGARDIA, 1943) who approached the problem from the point of view 
of the principles of thermodynamics.  Gravity and capillarity are not sufficient to 
account for the very high value of           at low saturations. They postulated 
the concept of adsorptive forces, to explain the thin water films on the solid

They suggested:

( ) ( ) ( ) ( )w fs w s Ps Os FsK S K S σ= ∇ ∆ = − ∇ ∆ + ∆ + ∆ + ∆V
Proportionality factor (hydraulic conductivity)

Component of specific free energy of soil moisture 
due to surface tension
due to hydrostatic pressure
due to presence of dissolved matter (osmotic pressure)
due to adsorptive force field surrounding soil particles

No attempt to present here a historical review…but

They suggested that           is Gibb’s free  energy of the water in the soil.
(neglecting kinetic energy) 

Ψ

Ψ
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Water in the unsaturated zone is usually not pure water, and not under 
isothermal conditions.  This requires that we consider the issue of the total 
energy in the water, or the total potential in the water, regarded as a solution.
(soil-solution).

We have to take into account BOTH fluid-fluid interface (…capillary pressure…)
and fluid-solid interfaces, also when water takes the form of thin films.

So, what is the driving force in the unsaturated zone?  A gradient of what?

Day (1942), identified Edelfson and Anderson’s        as

Partial Gibbs molar free energy (chemical potential) of water.

Ψ

. ,

G
wN p T N

k
γ

γ γµ µ∂

∂
= ⇒ = − ⋅∇q

Water as a component..

POTENTIALS ?
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Thus, we have to go to the fundamentals of thermodynamics in order 
to understand what is a POTENTIAL, kinds of potential etc., and how    
is  the TOTAL POTENTIAL of water, as a component in the soil solution,       
related to the CHEMICAL POTENTIAL.     

Unlike Darcy’s original work, we are dealing now also with 
nonisothermal flow in the presence of concentration gradients:

What “potential” should be used in Darcy’s law for unsaturated flow?

Should the gradient of the free energy of the aqueous phase be used in Darcy's 
Law, or that of the water component? 

Is there a difference  between the diffusive flux of  water as a component
and the advective flux of the aqueous phase ?

Is  the potential defined as free energy identical to  the matric potential ?

….and make sure that everything is properly transformed from the microscopic
to the macroscopic level…the answers are important for nonisothermal, 
unsaturated flow with dissolved matter, at low saturations.
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Some thoughts and definitions about potentials 
associated with Phenomena of transport in porous 
media.

In physics: “potential” at a point is defined as the work that is 
required in order to transfer a unit mass from a given reference 
position to that point.

What potential (or, potentials) should be used for unsaturated
flow?
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Back to flow in the unsaturated zone (water-air, wetting-nonwetting fluids)

By averaging, say of the Navier-Stokes equations:

( ) ( )

( ) ( )

( ) ( ) ,

( ) ( ) ,

w n
w w w n

rw w w n n
w n

w n
n w n n

rn w w n n
w n

S Sp g z p g z

S Sp g z p g z

ρ ρ
µ µ

ρ ρ
µ µ

= − ⋅ ∇ + ∇ − ⋅ ∇ + ∇

= − ⋅ ∇ + ∇ − ⋅ ∇ + ∇

k kq

k kq

Note:   COUPLING, due to momentum transfer across the fluid-fluid interface.

For saturated flow:  momentum transfer from fluid to solid:
1

wsS
dS− ⋅∫ τ n

0UIn the unsaturated zone, e.g., for the water

and1 1
ws waS S

dS dS− ⋅ − ⋅∫ ∫τ n τ n
0 0U U

…and a similar sum for the air phase
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Many researchers claim that the coupling can be neglected, BUT not all of them,
e.g., WALTER ROSE (see also the earlier works by Yuster (1951) and Odeh (1959)
and many others in the Reservoir engineering field), but only a few experiments.

Thus, we usually approximate:

( )

( )

( ) ,

( ) ,

w w
rw w w

w

n n
rn n n

n

S p g z

S p g z

ρ
µ

ρ
µ

= − ⋅ ∇ + ∇

= − ⋅ ∇ + ∇

kq

kq
…but still coupling between the two phases, due to               

1.0,       and ( )w n n w c wS S p p p S+ = − =
In soil physics,

( ) ( ), w
rw w

w

pq K z
g

ψ ψ ψ
ρ

= − ⋅∇ − = −

where        is called suction.ψ
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Basic approach---each fluid occupies a certain portion of the void space, hence:
DARCY”S LAW IS APPLICABLE TO EACH FLUID   separately, with 
the effective permeability:

( ), ( ),w w w n n nk k S k k S= =

Often it is ASSUMED, especially in unsaturated (air-water) flow , that the 
air is everywhere (more or less) at atmospheric pressure (not always justified!).
Then, only:

( )( ) , 0, 0.w w
rw w w a a

w

S p g z pρ ρ
µ

= − ⋅ ∇ + ∇ ≈ ≈
kq

Can be written in terms of water saturation, wS

( )( ) ./

( ) ( ) ,

w w
w w w

w

rw w w w w w

SS dS d

S S S z

ψ= = −

=− ⋅∇ − ⋅∇

KD D

q D K

Moisture diffusivity

Basic approach---each fluid occupies a certain portion of the void space, hence:
DARCY”S LAW IS APPLICABLE TO EACH FLUID   separately, with 
the effective permeability:

Common 
assumption
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The discussion of two-phase flow can be extended also to THREE FLUID PHASES, 

3-phase flow used to be of interest primarily in reservoir engineering, but recently, 
because of subsurface contamination by NAPLs, this subject became important also
for modeling subsurface (vadose zone and aquifer) contamination.

Although the focus of this presentation is on Darcy’s law, over the 
years, the field of TIPM has made huge progress also in many other areas.
Obviously, Darcy’s law plays the essential role in all transport models.

From groundwater flow 
phenomena of transport in porous media

e.g., 
DISPERSION solute transport, contaminant transport,…reactive transport, etc.  
Heat, ….., geothermal, ….energy storage,…..radioactive waste disposal, ,…
Deformation….consolidation & land subsidence…wave propagation,…acoustics..
Biomedical.. Transport of solutes in lungs and kidneys..

..and I have not
mentioned fractured
rock domains…
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Obviously, during all this period, research and applications on:

Groundwater hydrology
Phenomena of transport in porous media 

have been taking place and huge progress has been made., with
applications in:

Civil & Environmental Engineering and (groundwater flow, groundwater
contamination and remediation, geo-mechanics, building materials)

Agriculture Engineering (irrigation, drainage)

Reservoir Engineering (improved recovery techniques, geothermal reservoirs)

Biomedical engineering (modeling of fluids and solutes in body organs)

Chemical Engineering (reactors  and membranes)

Radioactive waste disposal……etc.
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Significant developments in (e.g.,):

Contaminant transport in the subsurface, with bio-chemical reactions. 
(with applications in remediation technique, radioactive waste repositories,…)

Density dependent flow and transport (e.g., in connection with sea water intrusion.)

Convective currents and instabilities for 

Coupled transport phenomena (mass, heat, reactive solutes)

Deformable porous media (and waves…acoustics, from TERZAGHI to BIOT….)

Flow and transport in fractured (and porous) rocks,  

Biomedical engineering…

Inverse problems (parameter identification)

Upscaling, better understanding of multiple scale heterogeneity,  

Coping with uncertainty/heterogeneity… STOCHASTIC MODELING

( , , )p c Tγρ ρ=
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Quite some distance from …………………………………

Darcy’s (1856) experiments…and Dupuit assumption (1848, 1863).. 
Boussinesq equation (1877, 1903-4, 1913)…. Forchheimer formula (1886, 1924-30)…
Badon-Ghyben law…(1888)… Buckingham (1907) …..  Gardner .(1920).. 
Terzaghi (1925),  Kozeny (1927)… Richards (1931)… Muskat (1932)..
Casagrande (1934-6).. .Theis (1935)… Childs (1936, 48))…
K. Hubbert (1940)…Day (1942)… Buckley & Leverett (1942)…Biot (1943, 1955-6)….
Edelfson (1943)… Polubarinova-Kochina (1942-51)
Brinkman (1947-9).. J.R.Philip (>1954)…G. De Josselin de Jong *(1955).. 
Lykov (1954),..Carman (1950-1956) …Saffman (1957)…
Aravin & Numerov….

and many many others..
*May he live to 120!

Objective…..construct well-posed models of 
phenomena of transport,

Transform into NUMERICAL MODELS 

Use computer codes (and powerful computers) for solving of models.

Huge progress has been made in modeling:

FOR RESEARCH AND PRACTICE
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So, where do we go from here?
(focusing mainly on groundwater flow and solute transport modeling).            

Modeling solute transport with multiple/many chemical and biological reactions, 
among multiple chemical species, not necessarily under equilibrium 
conditions, also in connection with natural attenuation and remediation
techniques.  From the microscopic level to the macroscopic one—to
field scale. Modeling (chemical and biological) reactive transport, e.g.,       
associated with artificial  recharge of treated wastewater. 

Improved techniques for model calibration (inverse problem, parameter identification 
problem) for large  scale fields (always heterogeneous) problems---both flow 
and solute transport coefficients. Uncertainty in calibration.

Linked?

The driving force will be increased demand for fresh, clean water 
(quantity and quality) for the population, and a clean environment. 

Increased demand for more oil (enhanced oil production techniques.

Another driving force is the continuously growing power of 
computers which enable solutions of more complicated problems. 

..and, of course…”publish or perish…
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Effects of pathways in both the saturated and the unsaturated zones, due to
subsurface  heterogeneity. Investigation techniques (e.g., tracers).

Use of tracers and age determination for investigations of large water resources 
systems.

More and improved methods for modeling under uncertainty in model parameters and
coefficients, e.g., associated with the heterogeneity of the problem domain,
or with replenishment from precipitation.  Stochastic models.  Probabilistic 
forecasting.  Models for management under uncertainty.  

Efficient  sat-unsat modeling for large scale aquifer domains, in view of the different 
space and time scales involved. Modeling of phenomena with different time
scales.

Improved efficient combined subsurface - above surface hydrological models for large
watersheds.  Improved estimates of natural replenishment.

Simultaneous modeling of multiple scale flow and transport phenomena, e.g., domain
with a porous solid matrix,  and porous fracture rocks. The interaction
(e.g., chemical/biological) between micropores and macropores
(also microfractures/macrofractures)        
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Combining models for the optimal management of groundwater 
resources with prediction models, which serve as a constraint to the 
optimization  model.   

Efficient numerical techniques for cases in which  phases and chemical 
species  appear/disappear. 

Technologies to increase natural replenishment from precipitation.

Technologies for remediation of contaminated subsurface. 

Optimal management (quality/quantity) of large scale water resource
systems—with multiple surface water groundwater resources

Effect of climate changes on water resources systems.

Improved data management techniques, with linkage to large scale
hydrogeological models.

On the scale of water resources systems:
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On phenomena of transport in porous media.

Chemical-biological reactions at micro level (including in micropores/microfractures)
and their description at the macroscopic level.

Heterogeneity at multiple scales, especially effect on  solute and heat transport.

Multiphase flow and transport (of heat and solute).

Non-Newtonian fluids and non-elastic porous media.

Transport of fines and colloids, with chemical/biological aspects. Movement of 
bacteria and viruses through the void space.

Dispersion at different scales and in multiphase flow. Also in anisotropic 
porous media.

Electric flow and electro-osmosis in porous media, in connection with 
remediation technologies.
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Use of heat in subsurface remediation.

Compressed air energy storage, heat storage 
and sequestration of CO2

Dispersion in anisotropic porous media 

Dispersion in unsaturated/multiphase flow

Anisotropy in unsaturated/multiphase flow

and…..hopefully…more fundamentals,….more experimental 
validation of models 

….and a little less computer experiments…
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THANK YOU
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